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Previous analyses of the Verwey transition in magnetite have
been placed on a 5rm footing by a consistent analysis of the
statistical properties of an array of quantum states associated
with ferrous or ferric ions in octahedrally coordinated interstices
of the spinel lattice. This collection is represented by an assembly
of bonds and sites. Individual sites can be in one of three con5g-
urations: empty, as in the Fe31 state, trapped, or polaronic if in
the Fe21 state. On neglect of high-energy states involving elec-
tron occupation of neighboring lattice sites, one arrives at an
analytic equation of state for the order parameter in its depend-
ence on temperature, which can be solved numerically. This
equation is su7ciently 6exible to handle both the 5rst- and
second-order transitions by appropriate changes in parameters.
The present theory rationalizes the experimentally observed
changes in the order of the Verwey transition that result from
alterations in the sample stoichiometry. ( 1999 Academic Press

1. BACKGROUND INFORMATION

The magnetite systems Fe
3(1~d)O4

, Fe
3~x

Zn
x
O

4
, and

Fe
3~y

Ti
y
O

4
(also designated as Verwey materials) pose an

interesting theoretical challenge: it has been established
through extensive experimentation (1) that with increasing
d, x, or y one encounters a change in the thermodynamic
nature of the Verwey phase transformation. Namely, in the
range d4d

#
"0.0039 and for x"y"3d the transforma-

tion is "rst order, with a very sharp spike in the heat
capacity anomaly and latent enthalpy at the Verwey
transition temperature ¹

7
; the corresponding entropy of

transition is *S
7
"R ln 2 at d"0. Systems of this nature

will be designated as belonging to class I. For d
#
4d43d

#
,

as well as for x"y"3d in this range, the transition is of
second order; a j-like heat capacity anomaly is spread over
a considerable temperature range about ¹

7
, and no latent

enthalpy of transition is encountered. The corresponding
1To whom correspondence should be addressed. Present address: Enter-
taining Solutions, 10989 Blu!side Drive, Suite 3404, Studio City, CA 91604.
E-mail: hkloor@aol.com.
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systems will be designated as belonging to class II. Finally,
for d'3d

#
and for x"y"3d the Verwey materials do not

exhibit any low-temperature phase transitions; these com-
pounds are classi"ed as belonging to category III. The
various manifestations of the above transformations (or
lack thereof ) will be collectively termed the Verwey
transitions.

The limited aim of this introductory paper is to provide
a uni"ed approach for the theoretical description of the
Verwey transitions. In later publications we intend to study
in more detail the associated changes in thermodynamic
and electrical transport properties.

The basic theory that can serve as a model for the study of
Verwey transitions was outlined sometime ago by Straessler
and Kittel (hereafter referred to as SK) in a brief paper (2)
that deserves to be more widely known. More detailed
accounts have recently been provided (3, 4). Basically, SK
posited a ground state of energy E

0
"0 with degeneracy g

0
,

occupied by n
0

out of N particles, and an excited state of
energy E,E

1
"N[et!(1/2)jt2], with degeneracy g

1
and occupation n

1
"N!n

0
. Here t,n

1
/N may be con-

sidered as an order parameter; the et and !(1/2)jt2 terms
simulate, respectively, the degree of occupation of and the
interaction between particles in the excited and ground
state. The entropy is speci"ed by S"Nk

B
ln=, with

="gnÒ0
gnÇ1

N !/[(N!n
1
) ! n

1
!], where k

B
is the Boltzmann

constant. On constructing the free energy via F"E!¹S
and minimizing the latter with respect to t one obtains the
equation of state characterizing equilibrium

LF

Lt
"0"e!jt!k

B
¹Cln

g
1

g
0

#lnA
1!t

t BD, [1.1]

which must be solved numerically for t (¹; !), where the
parameter set !,j, e, g

1
/g

0
must be speci"ed. As SK dem-

onstrated, the three choices g
1
/g

0
'1, g

1
/g

0
"1, or

g
1
/g

0
(1 are su$cient to guarantee that t (¹, !) is discon-

tinuous at a critical temperature ¹
7
, that the "rst derivative

is discontinuous at ¹
7
, or that t (¹, !) remains continuous.
5
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In other words, the SK equation of state is su$ciently
#exible that "rst-order and second-order transitions (as well
as no transitions) can be handled by the same formalism.

However, it is not obvious how the two-level approach
can be correlated with the physical characteristics of Verwey
materials. Rudimentary attempts to address this problem
have been published (5). However, they su!er from short-
comings that have been detailed elsewhere (3). Here we
construct a uni"ed model that handles the Verwey
transition problem without the inadequacies of the earlier
work. The results are formally equivalent to the SK mean
"eld approach. The present derivation is a variant of a more
detailed version (3) to which the reader in referred for an
alternative, more explicit exposition.

2. FUNDAMENTALS

It is well established that for temperatures ¹
7
'121 K

Fe
3
O

4
crystallizes as an inverse cubic spinel, with a unit cell

comprised of 32 anions arranged on a face-centered cubic
lattice; the cations "t into 8 out of 64 possible tetrahedrally
coordinated interstices (c

4
), and into 16 out of 32 octahed-

rally coordinated interstices (c
8
). The former are known to

be exclusively occupied by Fe3` ions, while the latter con-
tain Fe2` and Fe3` ions in equal concentration. Stated
more accurately, the c

8
coordinated sites contain Fe3` ion

cores, with half as many &&extra'' electrons distributed among
them. As a concomitant to the Verwey transition at
¹

7
(121 K the crystal su!ers a slight distortion to the

monoclinic structure; this transformation alters the degen-
eracies of the orbitals into which these extra electrons are
placed. Incorporation of excess oxygen to form Fe

3(1~d)O4
or doping with aliovalent Fe2` and Ti4` alters the density
of the extra electrons.

The laws of mass conservation and electroneutrality can
be used to deduce the actual cation distribution in nonstoi-
chiometric magnetite of composition Fe

3(1~d)O4
. Assuming

that the disorder occurs solely among c
8

sites the cation
distribution is given by (Fe3`) [Fe3`

1`6dFe2`
1~9d h

3d]O
4

per
formula unit (FU). Here (Fe3`) represents trivalent iron
occupying c

4
sites, while square brackets enclose cations

Fe3` and Fe2` occupying c
8

sites; vacancies (h) are gener-
ated when d'0. For d'0, 1!9d extra electrons are
distributed among the 2!3d c

8
sites occupied by iron, and

1#6d sites remain vacant (note the distinction between
vacant and unoccupied c

8
sites). The density of unoccupied

sites C and of occupied sites D, respectively, is thus given by

C"(1!9d)/(2!3d)+
1

2
!

15d
4

"1!D [2.1]

D"(1!6d)/(2!3d)+
1

2
#

15d
4

. [2.2]
Since Ti4` replaces iron exclusively in o-locations,
Fe

3~y
Ti

y
O

4
must be represented by (Fe3`)

[Fe3`
1~2y

Fe2`
1`y

Ti4`
y

]O
4
, so that

C"1
2

[1#3
2

y], D"1
2
[1!3

2
y] for y;1.

Zn2`, on the other hand, replaces iron exclusively in t-
locations so that Fe

3~x
Zn

x
O

4
is properly represented by

(Fe3`
1~x

Zn2`
x

) [Fe3`
1`x

Fe2`
1~x

]O
4
; this leads to C"(1!x)/2,

D"(1#x)/2.

3. LATTICE REPRESENTATION

In our further development we now consider the extra
electrons that are distributed among the octahedrally coor-
dinated cations; we also restrict ourselves to undoped
(though nonstoichiometric) magnetite. It is then reasonable
to replace the entire magnetite lattice by the collection of
c
8

coordinated cations and their associated extra electrons.
The latter are placed into di!erent types of states with their
respective orbitals. Hence, the fundamental objects of the
statistical analysis are considered to be these orbital states
rather than the electrons that populate them. In a sub-
sequent analysis we consider the degree of occupation of
these orbitals by the extra electrons.

We now distinguish between the following con"gura-
tions: (i) c

8
interstices populated by Fe3` cores; these are

designated as empty (e) states, accorded the symbol C or X.
The associated energies and degeneracies are e

0
and j

0
,

respectively. (ii) Trapped (t) states, which are generated
when an electron resides at a c

8
site, subject to such a strong

distortion of local surroundings that the charge carrier
cannot acquire the necessary thermal energy to move to
adjacent e states. The electron and distorted surroundings
as a unit is assigned the symbol ? or >, an energy e

1
and

a degeneracy j
1
. (iii) Polaronic (p) states, wherein a given

extra electron temporarily resides on a c
8

site, together with
a slight distortion of the immediate anion surroundings. The
resulting polaron can migrate as a unit to an adjacent
e state, when thermal #uctuations temporarily bring the
p and e states into energetic coincidence. This entity is
assigned the symbol d or Z and is associated with energy
e
2

and degeneracy j
2
. The unit can acquire a directed drift

(by hopping) under the in#uence of an applied electric "eld.
These various con"gurations and their properties are sum-
marized at the top of Table 1, together with the probabilities
of their occurrence, a

i
.

The above units cannot be considered in isolation. First,
as already mentioned, a unit in the p state is capable of
moving to an adjacent e state. Also, Coulomb interaction
between electrons on adjacent c

8
sites a!ect the degree of

occupation of the latter. We take these e!ects into account,
but will ignore longer range interactions involving next-
nearest neighbor c

8
sites. Even in the present approximation



TABLE 1

Designation Figure Energy Degeneracy Probability

X s e
0

j
0

a
0

> ? e
1

j
1

a
1

Z d e
2

j
2

a
2

XX s*s e
0, 0

j
0, 0

b
0, 0

>> ?*? e
1, 1

j
1, 1

b
1, 1

ZZ d*d e
2, 2

j
2, 2

b
2, 2

>Z ?*d e
1, 2

j
1, 2

b
1, 2

d*? e
2, 1

b
2, 1

XZ s*d e
0, 2

j
0, 2

b
0, 2

d*s e
2, 0

b
2, 0

X> s*? e
0, 1

j
0, 1

b
0, 1

?*s e
1, 0

b
1, 0

Note. De"nitions of the bond and site "gure assemblies for the three
state model. The type of state, "gure representation, energy of the site or
bond, degeneracy of the site or bond, and probability of occurrence is
listed. It is assumed that e

i, j
"e

j, i
and b

i, j
"b

j, i
.
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the lattice itself is too complex a unit for statistical analysis.
We therefore follow the approximation procedure of Hij-
mans and de Boer (5) in breaking down the lattice proper
into assemblies of independent &&bonds'' (b) and &&sites'' (s)
that form representative arrays. There are then nine distinct
occupation states for the bonds that represent the various
possible occupation states of neighboring c

8
lattice sites.

These entities are listed in Table 1, along with their asso-
ciated probabilities of occurrence, b

ij
, energies, e

ij
, and de-

generacies, j
ij
.

For a lattice where each site is surrounded by Z nearest
neighbors we require (Z/2)¸ bonds to represent all possible
nearest neighbor pairs of c

8
sites. This b collection already

includes Z¸ individual s sites, whereas the actual number of
sites in the lattice proper is ¸. To compensate for the
overcount we must therefore construct a site-"gure s assem-
bly of (Z!1)¸ members whose energies and entropies are
to be subtracted from the corresponding properties of the
bond "gure assembly.

4. STATISTICAL PROPERTIES

We begin the statistical treatment by referring to the
listing of the possible occupation states in Table 1.

The energy of the bond b assembly is given by

;
b
"

Z

2
¸C

2
+
i/0

(j
0i

b
0i

e
0i
#j

ii
b
ii
e
ii
)!j

00
b
00

e
00D , [4.1]

where the last term compensates for the extra term in
the summation that occurs when i"0. The site s "gure
assembly that corrects for the site overcount in the b
assembly has the energy

;
s
"(Z!1)¸

2
+
i/0

j
i
a
i
e
i
. [4.2]

The entropy for g distinguishable con"gurations is speci-
"ed by the Boltzmann expression S"k

B
+g jg pg ln pg, where

the pg are the occupation probabilities. From Table 1 we
obtain

S
b
"!

Z

2
¸k

BC
2
+
i/0
Aj0ib0i

lnb
0i
#j

ii
b
ii
ln b

iiB
!j

00
b
00

lnb
00D [4.3]

S
s
"!(Z!1)¸k

B

2
+
i/0

j
i
a
i
ln a

i
. [4.4]

The total Helmholtz free energy per site pair F"2F/¸ is
given by

F"2[(;
b
!;

s
)!¹ (S

b
!S

s
)]/¸

"Z
2
+
i/0

[j
0i

b
0i

e
0i
#j

ii
b
ii
e
ii

#k
B
¹(j

0i
b
0i

lnb
0i
#j

ii
b
ii
lnb

ii
)

#2(1/Z!1) (j
i
a
i
e
i
#k

B
¹j

i
a
i
ln a

i
)]

!Zj
00

b
00

(e
00
#k

B
¹ lnb

00
). [4.5]

The nine variables b
ij

and a
j
are not all independent. First,

the probabilities must be normalized to unity:

2
+
i/0

(j
0i

b
0i
#j

ii
b
ii
)!j

00
b
00
"1 [4.6]

2
+
i/0

j
i
a
i
"1. [4.7]

Second, there exist consistency conditions which arise be-
cause the number of sites of type X in the bond and site
"gure assemblies of Table 1 must match the actual count,
a
0
¸, in the lattice. When the multiplicities are properly

taken into account we "nd that for sites of type X

(Z/2)¸[2j
00

b
00
#j

01
b
01
#j

02
b
02

]#(1!Z)¸j
0
a
0
"a

0
¸,

[4.8a]

or

2j
00

b
00
#j

01
b
01
#j

02
b
02
"2j

0
a
0
. [4.8b]
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Similarly, for sites of type > or Z

2j
11

b
11
#j

01
b
01
#j

12
b
12
"2j

1
a
1

[4.9]

2j
22

b
22

#j
02

b
02
#j

12
b
12
"2j

2
a
2
. [4.10]

Not all of these equations are unique. For if we sum [4.8b],
[4.9], and [4.10] we obtain a form equivalent to [4.6], [4.7].
Thus, only four of the "ve above constraints are indepen-
dent.

A "nal constraint arises from a match of compositions.
The density of unoccupied sites which a!ects the actual
electron density is speci"ed by the experimental value of
unoccupied c

8
sites in the lattice proper, C, as given by Eq.

[3.1]

j
0
a
0
"C. [4.11]

We arbitrarily consider Eq. [4.6] to be the redundant equa-
tion and select a

2
, b

22
, b

02
, b

00
as the independent variables.

The dependent variables can then be speci"ed as

j
1
a
1
"1!j

2
a
2
!C [4.12]

j
01

b
01
"2C!j

02
b
02
!2j

00
b
00

[4.13]

j
12

b
12
"2j

2
a
2
!j

02
b
02
!2j

22
b
22

[4.14]

j
11

b
11
"1#j

00
b
00
#j

22
b
22
#j

02
b
02
!2C!2j

2
a
2
.

[4.15]

We next enforce equilibrium by requiring LF/Lb
00
"

LF/Lb
02
"LF/Lb

22
"LF/La

2
"0 to minimize the free en-

ergy. The minimization process is straightforward but tedi-
ous. After a series of elementary steps detailed in Ref. (3) one
"nds the following interrelations among the occupation
probabilities:

ln (b
00

b
11

/b2
01

)"!E
1
/k

B
¹ [4.16a]

ln (b
02

b
11

/b
01

b
12

)"!E
2
/k

B
¹ [4.16b]

ln (b
22

b
11

/b2
12

)"!E
3
/k

B
¹ [4.16c]

ln (b
12

/b
11

)#b ln (a
2
/a

1
)"!(E

4
#E

$
)/2k

B
¹, [4.16d]

wherein

b,1/Z!1, E
1
,e

00
#e

11
!2e

01
,

E
2
,(e

02
!e

01
)#(e

11
!e

12
),

E
3
,e

22
#e

11
!2e

12
, E

4
,(e

12
!e

11
)#2b(e

2
!e

1
)

E
$
,(j

00
/j

2
)b

00
(LE

1
/La

2
)#(j

02
/j

2
)b

02
(LE

2
/La

2
)

#(j
22

/j
2
)b

22
(LE

3
/La

2
)#a

2
(LE

4
/La

2
)

#(1/j
2
) (LE

5
/La

2
) [4.17]

where

E
5
"C[2e

01
!e

11
#2b(2e

1
!e

0
)], [4.18]

Clearly, numerical solutions are required to specify the
above b's and a's; moreover, six parameters are involved in
the solution, not counting the individual energies nor the
degeneracy factors in Eq. [4.17]. While brute force solutions
can be obtained by numerical techniques they do not
furnish systematic insight. A simpler approach is clearly
desirable.

5. SIMPLIFICATION

Equations [4.16a]}[4.16d] become amenable to analytic
formulations if we assume that the energy of all doubly
occupied bonds is much greater than the energies of all
other con"gurations. Such an assumption is not unreason-
able, given the large coulombic repulsion between electrons
located on nearest neighbor octahedral sites. Adoption of
this assumption is equivalent to disallowing all double occu-
pancies:

b
11
"b

12
"b

22
"0. [5.1]

This condition follows formally from the basic assumption,
as shown elsewhere (3).

On introducing [5.1] into [4.11] to [4.15] and expanding
[4.12] to "rst powers in d (;1) one obtains

2j
0
a
0
"2!) [5.2a]

2j
1
a
1
")!t (¹) [5.2b]

j
00

b
00
"1!) [5.2c]

j
01

b
01
"2j

1
a
1
")!t (¹) [5.2d]

j
02

b
02
"2j

2
a
2
"t (¹). [5.2e]

In the above we have introduced an order parameter
t which is of intrinsic interest, and a stoichiometry para-
meter ), as

t,2j
2
a
2
, [5.3a]

),1!15d/2. [5.3b]
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t will ultimately depend on ¹, due to the equilibrium
constraints. Thus, the occupation variables are variously all
speci"ed in terms of ¹ and d.

6. ENERGY

With the above simpli"cation the expression of the energy
per pair of nearest neighbor sites reduces to

;"Z[j
00

b
00

e
00
#j

01
b
01

e
01
#j

02
b
02

e
02

]

#(1!Z) [2j
0
a
0
e
0
#2j

1
a
1
e
1
#2j

2
a
2
e
2
]. [6.1]

When Eqs. [5.2] and [5.3] are substituted and the results
are simpli"ed one obtains

;"Z (1!)) (e
00
!e

0
)#(2!Z)e

0
#Z()!t)*

1
(t)

#Zt*
2
(t)#t G

2
(t)!)G

1
(t), [6.2]

where we have introduced four energy &&gaps'' as

G
2
(t),e

2
!e

1
"G0

2
#tG@

2
[6.3a]

G
1
(t),e

0
!e

1
"G0

1
#tG@

1
[6.3b]

*
2
(t),e

02
!e

2
"*0

2
#t*@

2
[6.3c]

*
1
(t),e

01
!e

1
"*0

1
#t*@

1
[6.3d]

In keeping with the methodology commonly used we have
expanded each of the functions in [6.3] as a Taylor series in
t, retaining only "rst-order terms. That is, we allow each
gap to vary linearly with t, as shown on the right of Eqs.
[6.3a]}[6.3d]. The superscripts 0 and the prime designate
values of G

2
or G

1
and of its derivatives at t"0. Next,

substitute [6.3] into [6.2] and group the various coe$cients
of t0, t, and t2. On discarding the terms involving the
constant parameters we obtain

;"[Z)(*@
1
!G@

1
)#Z (*0

2
!*0

1
)#G0

2
]t

#[Z (*@
2
!*@

1
)#G@

2
]t2,m

0
t!1

2
m

1
t2. [6.4]

Note that we have now arrived at the SK formulation for
the energy of a two-level system. The constant value of the
e
0
!e

1
gap, G0

1
, has been grouped with the discarded terms

and has therefore disappeared. The leading term in t is
given by m

0
\G0

2
,e0

2
!e0

1
, while the remaining terms in-

volve di!erences in gap energies and their derivatives, both
of which are smaller. Likewise, the leading term in t2 is
given by 1

2
m

1
\!G@

2
, just as in the SK theory. We have

thereby obtained a physical interpretation of the parameters
m

0
and m

1
, (or e and j in the SK formulation) as applied to

the Verwey problem.
7. THE ENTROPY

With the use of Eq. [5.1] we obtain the following expres-
sion for the entropy per pair of nearest neighbor sites:

!S/k
B
"ZMj

00
b
00

ln b
00
#j

01
b
01

lnb
01
#j

02
b
02

ln b
02

N

#(1!Z) M2j
0
a
0
ln a

0
#2j

1
a
1
ln a

1
#2j

2
a
2
ln a

2
N. [7.1]

On applying Eqs. [5.2] and [5.3] and carrying out the
lengthy elementary algebraic manipulations we group the
results into terms not involving t and terms involving t as

!S/k
B
"ZM(1!)) ln [(1!))/j

00
]!(2!)) ln [(2!))/2j

0
]

#) ln (2j
1
/j

01
)N#(2!)) ln [(2!))/2j

0
]

!) ln (2j
1
)#()!t) ln ()!t)#t ln t

#Zt ln [j
01

j
2
/j

02
j
1
]#t ln (j

1
/j

2
). [7.2]

This result may be recast in the simple form

!S/k
B
"()!t) ln ()!t)#t lnt#t ln (t

c
/jf)#ln r,

[7.3]

where ln r comprises all terms not involving t, and where

j
c
,(j

01
/j

1
)Z j

1
[7.4a]

jf,(j
02

/j
2
)Zj

2
. [7.4b]

We relate j
01

, j
02

, j
0
, j

1
, j

2
by writing

j
02

b
02
"Q

2
(j

0
a
0
) (j

2
a
2
) [7.5a]

j
01

b
01
"Q

1
(j

0
a
0
) (j

1
a
1
) [7.5b]

as two ways of specifying the probabilities of occupying XZ
and X> site pairs; the Q

1
, Q

2
are proportionality factors.

On now inserting Eqs. [5.2] in [7.5] we obtain Q
1
"

Q
2
"4/(2!)). In the mean "eld approximation that

underlies the present theory we set b
0i
"a

0
a
i
(i"1, 2); we

then obtain

j
c

/jf"j
1
/j

2
[7.6]

and

ln r"(1!)) lnA
1!)
j
00
B
Z
#(2!)) lnA

2!)
2j

0
B
1~Z

#) ln (2j
1
)Z~1!) ln M[4/(2!))]j

0
j
1
NZ. [7.7a]



FIG. 1. Plot of order parameter t vs k
B
¹/j for e/j"5/9 (Part (a)), 2/3

(part (b)), 1/2 (part (c)), respectively. Here e,m
0
, j,m

1
. Dotted curves

represent unphysical solutions.
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Of considerable interest is the case )"1, corresponding to
stoichiometric magnetite. We "nd in place of [7.7a] the
simple relation

ln r"!ln (4j
0
j
1
)"!ln j

01
. [7.7b]

Thus, the entropy of stoichiometric magnetite at 0 K is
governed solely by the degeneracy of the X> state.

8. THE FREE ENERGY MINIMIZATION

On assembling Eqs. [6.4] and [7.3] one may write the
Helmholtz free energy per nearest neighbor site pair as

F"F(t; ¹, d)"m
0
t!1

2
m

1
t2#k

B
¹[ln r#t lnt

#()!t) ln ()!t)#t ln (j
c

/jf)]. [8.1]

Finally, we enforce the equilibrium constraint LF/Lt"0,
and set )"1, thereby ignoring e!ects arising from non-
stoichiometry. This leads to the equation of state

m
0
!m

1
t

k
B
¹

"lnA
1!t

t B#lnA
j
2

j
1
B , [8.2]

which is of precisely the same SK form as Eq. [1.1].

9. DISCUSSION

As compared to the earlier attempts (5) the present
approach provides a self-consistent connection between the
experimental "ndings of the Verwey transition and the
two-level SK theory. This uni"ed theoretical development
validates the data "tting procedures adopted previously (5)
in the interpretation of the data along the lines of the SK
theory.

To demonstrate the versatility of the theory we show in
Figs. 1 and 2 the variation of the order parameter t with
temperature ¹ for a variety of m

0
/m

1
"e/j values. The

functional dependence is found by numerical solution of the
equation of state, Eq. [8.2] and is shown as a plot of t vs
k
B
¹/j. The physically realizable solutions are indicated by

solid curves while the dotted curves show ranges of t that
are not accessible. Figure 1a for m

0
/m

1
"e/j"5/9 clearly

shows the discontinuity in the order parameter character-
istic of a "rst-order transition. Note that beyond the
transition temperature ¹

7
, t diminishes with rising ¹, a fea-

ture which SK described as a super-transition. The variation
of t with k

B
¹/j for m

0
/m

1
"e/j"2/3 gives rise to a normal

"rst-order transition, shown in Fig. 1b, wherein t continues
to rise with ¹'¹

#
. Note the detailed diagram of Fig. 2

which shows the existence of loops that require a Maxwell
construction with equal areas A and B, as shown in the
"gure; the dividing line de"nes the temperature ¹

7
. Thus,

the theory successfully models gradual changes in order
parameter that terminate in a "rst-order transition at the
critical temperature. Finally, we show in Fig. 1c the change
of t with k

B
¹/j for m

0
/m

1
"e/j"0.5, which is indicative of

a second-order transformation, wherein t is continuous but
its "rst derivative is discontinuous at ¹

#
.



FIG. 2. Detailed representation of Fig. 1b. Insert shows discontinuity
in the order parameter at k

B
¹/j"0.245, determined by a Maxwell con-

struction that equalizes areas A and B inside the loops. Arrows indicate the
hysteresis path.

FIG. 3. Plot of calculated (full curve) vs experimentally observed en-
tropy changes at the "rst-order Verwey transition in Fe

3(1~d)O4
. The

transition temperature ¹
7
shifts downward with increasing d.
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We test the validity of the present theory by confronta-
tion with experiment. Such tests were already undertaken
earlier (5) with the SK model; thus, a brief review of the
"ndings su$ces. One needs to determine three parameters:
m

0
, m

1
, and j

2
/j

1
for use in Eq. [8.2]. We begin by taking

the di!erence in entropy S
7

just above and just below the
Verwey transition temperature ¹

7
, using Eqs. [7.3] and

[7.6] with )"1 and set t
1
,1

2
(1!*), t

2
"1

2
(1#*) to

"nd
S
7
"N* ln (j

2
/j

1
). [9.1]

For stoichiometric magnetite the experimental value for the
molar entropy of the Verwey transition is close to R ln 2 (7);
allowing for two octahedral sites per formula unit requires
that we set *"1

2
and j

2
/j

1
"2. The parametrizations for

m
0

and m
1

were performed by noting how ¹
7

varies with
deviations from ideal stoichiometry (d in Fe

3(1~d)O4
), as de-

tailed elsewhere (5). One "nds that

m
0
(d)"k

B
[3.862¹

7
(d)!118.0] [9.2a]

m
1
(d)"k

B
[6.338¹

7
(d)!236.1] [9.2b]

for "rst-order samples (101.04¹
7
4121.1 K).
We now carry out three tests of the model using the above
parametrization. (i) One can determine S

7
as described

earlier, but now allowing d (and thereby, ¹
7
) to vary. The

resulting plot is shown in Fig. 3 as a continuous curve. The
corresponding experimental values are superposed as
points. The agreement is very satisfactory. (ii) Without
changes in parameter one may determine the variation of
the Seebeck coe$cient a with temperature for a "xed com-
position. This requires the determination of the Fermi level
m for use in the relationship a"m/e¹, on neglect of the
kinetic energy contribution. From conservation of charge
one may determine m through the relation (3,5)

1

2
"

j
2
t

1#exp(!m/k
B
¹)

j
1
(1!t)

1#expM[!(m
0
!m

1
t)!m]N/k

B
¹

.

[9.3]

With the indicated parametrizations, setting j
2
"2j

1
"2,

d"0, and determining t via Eqs. [8.2] and [9.2] one
obtains t as a function of ¹, thence m(¹) from Eq. [9.3], and
"nally, a"m/e¹. The result is plotted in Fig. 4 as the full
curve. The experimental results (8) are shown as a dashed
curve. It must be remembered that no additional assump-
tions have been introduced. The agreement between theory
and experimental is satisfactory. (iii) The electrical conduct-
ivity p is given by p"nek, where

n"2j
2
t/[1#exp(!m/k

B
¹)] [9.4a]

is the mobile charge carrier density. The mobility is as-
sumed to be speci"ed by the small polaron model k"
(1!c)ea2!/k

B
¹, where

1!c"j
1
(1!t)/M[1#exp[!(m

0
!m

1
t)!m]/k

B
¹]N

[9.4b]



FIG. 4. Analysis of Seebeck coe$cient a"m/e¹ for Fe
3
O

4
(full curve),

compared to experimental measurements (dashed curve). The upper
dashed curve is measured for Fe

3
O

4
containing slight impurities.

FIG. 5. Analysis of resistivity o as plot of logo vs 1/¹ for Fe
3
O

4
. The

full curve is the calculated set of o values; the dashed curve represents
experimental data. The theoretical parameters were "xed at the crossover
points, but the remaining temperature variation of the full curve is deter-
mined by the theory.
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is the fraction of octahedral sites devoid of the extra elec-
trons and a is the separation distance between adjacent
octahedral sites. ! is the jump rate of the polaron, which in
the limiting form, is given by

!"pv
0
exp (!m

0
/k

B
¹), [9.5]

where v
0

is the appropriate optical phonon frequency and
p is the probability of encountering a jump during a coinci-
dence event involving initial and "nal sites. The variation of
the resistivity o,1/p was then determined as a function of
¹ with d"0. In these calculations pv

0
was treated as an

adjustable parameter, determined by "tting it separately to
experimetal results at a speci"c temperature in the range
below and above ¹

7
. The variation of o with ¹ is then fully

determined by the theory. In Fig. 5 we show plots of
logo vs 1/¹: the full curve represents the theory, the dashed
curve represents the experiments (8). Once again, the agree-
ment is satisfactory.

In conclusion, we have provided a theoretical description
of both thermodynamic and electrical transport properties
of Fe

3(1~d)O4
using a model related to order}disorder

theory. As formulated above, this approach handles both
the "rst- and second-order manifestations of the Verwey
transition and satisfactorily accounts for a variety of experi-
mental data pertaining to magnetite.
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